The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation.
نویسندگان
چکیده
Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor associated with the self-renewal lineage, in quiescent undifferentiated myoblasts after they exit the cell cycle. Stimulation of the Notch pathway by expression of a constitutively active Notch-1, or co-culture of myogenic cells with CHO cells transfected with Delta like-1 (DLL1), increases the level of Pax7. DLL1, a ligand for Notch receptor, is shed by ADAM metalloproteases in a pool of Pax7+ C2C12 reserve cells, but it remains intact in differentiated myotubes. DLL1 shedding changes the receptor/ligand ratio and modulates the level of Notch signaling. Inhibition of DLL1 cleavage by a soluble, dominant-negative mutant form of ADAM12 leads to elevation of Notch signaling, inhibition of differentiation, and expansion of the pool of self-renewing Pax7+/MyoD- cells. These results suggest that ADAM-mediated shedding of DLL1 in a subset of cells during myogenic differentiation in vitro contributes to downregulation of Notch signaling in neighboring cells and facilitates their progression into differentiation. We propose that the proteolytic processing of DLL1 helps achieve an asymmetry in Notch signaling in initially equivalent myogenic cells and helps sustain the balance between differentiation and self-renewal.
منابع مشابه
سلولهای بنیادی قلبی در یک نگاه: مقاله مروری
It was assumed that the loss of cardiomyocytes is irreversible. The main goal is to develop widely available and clinically applicable treatments for heart diseases. The several studies have showed that the use of stem cells can improve complicacies such as cardiovascular diseases. Stem cells have a potential benefit of the self-renewal and cell differentiation into the cell types that can play...
متن کاملفاکتورهای نسخهبرداری کلیدی موثر در تمایز سلولهای بنیادی مزانشیمی: مقاله مروری
Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are ...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملSignal Transduction Interaction of Delta-like 1 Homolog (Drosophila) with Prohibitins and Its Impact on Tumor Cell Clonogenicity
Cancer stem cell characteristics, especially their self-renewal and clonogenic potentials, play an essential role in malignant progression and response to anticancer therapies. Currently, it remains largely unknown what pathways are involved in the regulation of cancer cell stemness and differentiation. Previously, we found that delta-like 1 homolog (Drosophila) or DLK1, a developmentally regul...
متن کاملSpermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine
Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 22 شماره
صفحات -
تاریخ انتشار 2008